Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 7: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766271

RESUMO

For the production of healthier fruit snacks, vacuum frying is a promising alternative for atmospheric frying, to reduce the oil content, while maintaining a high nutritional quality. This paper evaluates the effect of ripening stages, frying temperature, and time on the quality of vacuum-fried mango. Unripe mango was dehydrated faster than ripe mango and had a higher hardness after frying at 110 and 120°C. Fat content in fried ripe mango was higher. Total ascorbic acid and ß-carotene in both ripening stages were not different, but after frying total ascorbic acid in unripe mango remains higher. A novel image analysis was applied to quantify the color distribution of fried mango. Color changes in unripe mango were more susceptible to temperature and time. Considering all quality parameters, vacuum frying of unripe mango at the optimal condition of 100°C for 20 min is preferred for producing high-quality healthier fruit snacks.

2.
Chemphyschem ; 16(9): 1969-77, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25891168

RESUMO

Gas-phase affinity studies based on cations and anions commonly present in ionic liquid structures, give quantitative information about the magnitude of the interactions holding the two species together when ILs are formed. They also provide clues on how these interactions depend on the nature of the cationic and anionic moieties. In the present work, mass spectrometric experiments, performed using electrospray ionization quadrupole ion-trap and Fourier transform ion cyclotron resonance mass spectrometry, were used to obtain two affinity scales by Cooks' kinetic method: one scale for the various cations for the bis(trifluoromethylsulfonyl)imide anion, [NTf2 ](-) , and another for the different anions for the 1-butyl-3-methylimidazolium cation, [C4 mim](+) . The obtained results are compared with previously reported data and discussed in terms of the structural characteristics of the different cationic and anionic species.

3.
Phys Chem Chem Phys ; 14(13): 4440-6, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22362189

RESUMO

A general strategy to determine enthalpies of formation of protic ionic liquids, based solely on enthalpy of solution measurements, was conceived and tested for 1-methylimidazolium ethanoate, leading to Δ(f)H°(m){[Hmim][O(2)CCH(3)], 1} = -(425.7 ± 1.2) kJ mol(-1). This result in conjunction with the enthalpy of formation of gaseous 1-methylimidazole (mim) proposed in this work, Δ(f)H°(m)(mim, g) = 126.5 ± 1.1 kJ mol(-1), and Δ(f)H°(m)(CH(3)COOH, g) taken from the literature, allowed the calculation of the enthalpy of the vaporisation process [Hmim][O(2)CCH(3)](l) → mim(g) + CH(3)COOH(g) as Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 119.4 ± 3.0 kJ mol(-1). The agreement between this value and Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 117.3 ± 0.5 kJ mol(-1), obtained for the direct vaporisation of [Hmim][O(2)CCH(3)], by Calvet-drop microcalorimetry, gives a good indication that, as previously suggested by Fourier transform ion cyclotron resonance mass spectrometry, Raman spectroscopy, and GC-MS experiments, the vaporisation of [Hmim][O(2)CCH(3)] essentially involves a proton transfer mechanism with formation of the two volatile neutral precursor molecules (mim and CH(3)COOH). Although being a low ionicity protic ionic liquid, [Hmim][O(2)CCH(3)] was chosen to validate the methodology proposed here, since its vaporisation mechanism has been unequivocally demonstrated by different methods and for different pressure ranges.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Prótons , Termodinâmica , Volatilização
4.
Chemphyschem ; 11(17): 3673-7, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21058381

RESUMO

The vaporization of a dicationic ionic liquid at moderate temperatures and under reduced pressures--recently studied by line-of-sight mass spectrometry--was further analyzed using an ion-cyclotron resonance mass spectroscopy technique that allows the monitoring of the different species present in the gas phase through the implementation of controlled ion-molecule reactions. The results support the view that the vapour phase of an aprotic dicationic ionic liquid is composed of neutral ion triplets (one dication attached to two anions). Molecular dynamics simulations were also performed in order to explain the magnitude of the vaporization enthalpies of dicationic ionic liquids vis-à-vis their monocationic counterparts.

5.
J Phys Chem B ; 114(27): 8905-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568799

RESUMO

The sublimation/vaporization of the protic ionic liquid 1,1,3,3-tetramethylguanidinium chloride, [Htmg]Cl, was studied by Fourier transform ion cyclotron resonance mass spectrometry in the temperature range 298-488 K and under a reduced pressure of 3.2 x 10(-6) to 1.5 x 10(-5) Pa. The results show that no charged species are present in the vapor over the condensed phase. Furthermore, ion-molecule reaction studies found no evidence of neutral ion pairs in the gas phase. This indicates that the sublimation/vaporization of [Htmg]Cl conforms to the general mechanism postulated for the distillation of protic ionic liquids, which involves a proton transfer leading to the formation of the neutral acid and base precursors, in this case hydrogen chloride and 1,1,3,3-tetramethylguanidine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...